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ABSTRACT
In this paper we consider the estimation of mobile chan-
nels that are modeled as autoregressive processes with a
bandwidth commensurate with the Doppler spread. Pi-
lot based estimation leads to brute FIR channel estimates
on a slot by slot basis. These estimates are then refined
by Wiener filtering across slots that performs the opti-
mal compromise between temporal decorrelation due to
Doppler spread and slot-wise estimation error. We fur-
thermore propose adaptive filtering techniques to imple-
ment the optimal filtering. For structured multipath chan-
nels, we introduce 2D filtering in which the refined FIR
channel estimates are optimally approximated by a mul-
tipath model in every slot. The techniques are illustrated
with applications from downlink channel estimation in
the 3G UMTS W-CDMA FDD system.

1. INTRODUCTION

In the Wideband CDMA (WCDMA) option of the FDD
mode of the 3GPP UMTS proposal for cellular wireless
communications, the classical single-user receiver used
in the forward link is the continuous-timeRAKE receiver,
which is a channel matched filter (MF), where the (to-
tal) channel is the convolution of the spreading sequence,
the pulse-shape filter and the multipath propagation chan-
nel. The term RAKE refers to a sparse channel impulse
response model in which the finite number of specular
paths leads to fingers (contributions at various delays) in
the channel impulse response. The propagation channel
MF is a MF to a sparsified approximation̂hpr(t) for the
propagation channelhpr(t).

In this paper we consider a discrete-time RAKE re-
ceiver, working at an oversampling rate to satisfy the
Nyquist criterion (corresponding to the pulse-shaping
bandwidth). The sparse channel representation is done
via an approximation strategy in which the convolution
of the discrete-time sparse channel modelĥprk with the
sampled pulse-shapepk approximates the sampled ver-
sion of the convolutionp(t) � hpr(t) of the true channel
and the pulse-shape.

The user codes considered are aperiodic, due to fact
that a cell-dependent scrambling gets superposed to
the user-dependent spreading; scrambling does not de-
stroy the orthogonality between the intracell users, but
it destroys the symbol-interval cyclostationarity of the
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CDMA signals, making the techniques derived for peri-
odic (short) codes non applicable, e.g. [1].

Previous results in the context of channel estimation
in aperiodic-code downlink systems either have compu-
tational complexity not suited for MS real-time imple-
mentation or they need knowledge of the propagation de-
lays, e.g. [2], [3]. In [4], a multi-rate pilot-aided Least-
Squares approach is presented for both the uplink and
the downlink, with the possibility of recursive implemen-
tation. They assume, however, the use of rectangular
pulse-shape filter. They use a Least-Squares-based pro-
cedure on the received signal (symbol) samples, which
can still lead to high computational complexity for slow-
rate users.

In [5] we proposed a sparse channel approximation
algorithm, the Recursive Early-Late (REL) algorithm,
along the lines of Matching Pursuit techniques, which is
again based on pilot-aided Least-Squares, but, due to the
whiteness of the training chips, it operates on the FIR es-
timate of the overall channel, which in general is much
smaller than a symbol period.

In this paper, we apply REL to a refined FIR esti-
mate of the overall channel. Pilot-assisted channel esti-
mation operates generally on a slot-by-slot basis, without
exploiting the temporal correlation of the channel coeffi-
cients of adjacent slots. In [6], an average of the FIR esti-
mate over slots is performed on the basis of a Karhunen-
Loéve decomposition of the channel tap autocorrelation
function. By applying optimal Wiener filtering across
slots, we can provide an alternative approach to refine
the brute FIR pilot-based estimates, optimally compro-
mising between temporal decorrelation (Doppler spread)
and slot-wise estimation error.

2. AUTOREGRESSIVE CHANNEL MODELS

In the context of the 3G UMTS W-CDMA FDD downlink
system, we consider the impulse response (at sampling
rate) of the radio channel from the base station BS to a
mobile station MS ash(t; � ) =

PL

i=1 gi(t)p(� � �i(t)),
the convolution of a sparse multipath propagation channel
containingL paths with a pulse-shape filter (transmitter
filter).

The receiver samplesM times per chip the lowpass
filtered received signal. Stacking theM samples per chip
period in vectors, we get the discrete-time representation
of the mobile channel at chip ratehl = [h1;l � � �hM;l]

T ,
which represents the vectorized samples of the overall
channel, including pulse shape, propagation channel and
receiver filter. The overall channel is assumed to have a



delay spread ofN chips, so in matrix notation, we have
h(n) = Pg(n) whereh = [h1 � � �hN ]T 2 CMN�1,
g = [g1 � � � gL] 2 CL�1 are the complex path ampli-
tudes and the temporal indexn is related to the trans-
mission of slotn from the BS to the MS. We consider the
channel constant over a slot. If we consider the delays
�i(t) constant in a particular environment (we can assume
this even in the case of relatively high mobile speed), the
pulse-shape convolution matrixP 2 RMN�L of the de-
layed pulse shape responses is constant

P = P (�1; � � � ; �L) =

2
664

...
...

...
p(t� �1) � � � p(t� �L)

...
...

...

3
775

wherep(t) is the root raised cosine with roll-off0:22.
Even though the notation may suggest a continuous-time
pulse shape, the columns ofP contain in fact samples of
p(t� � ).

In order to have a simple model for the evolution of the
complex path amplitudes over slots and to have low com-
plexity associated optimal filtering algorithms, we can
model their variation with an autoregressive (AR) pro-
cess of order sufficiently high to characterize the Doppler
spectrum. If we want to match only the channel band-
width with the Doppler spread, the resulting first-order
AR(1) model is

g(n) = � g(n � 1) +
p
1� �2�g(n) where

� = channel temporal correlation factor

= 2� cos 2�f3dB �
q
(2� cos 2�f3dB)

2 � 1

f3dB =
v

c
fc SP where SP = slot period;

v; c = mobile,light speed fc = carrier frequency

�2gk = �2�gk

Therefore, because ofP being constant, we have

h(n) = �h(n � 1) +
p
1� �2�h(n)

=

p
1� �2

1� �q�1
�h(n) :

(1)

q�1 denotes the delay operator:q�1y(n) = y(n � 1).
Variance ofhk(n) (componentk of h(n)): �2hk =

�2�hk = P kDP
H
k whereP k = kth line of P and

D = diagf�2�g1 ; �2�g2 ; : : :g.

3. OPTIMAL WIENER FILTERING OF CHANNEL
ESTIMATES

If at the receiver we get/have an estimate of the overall
channel,ĥ(n), a channel estimation error~h has to be
considered,̂h(n) = h(n) + ~h(n), whereh and ~h are
mutually uncorrelated, the components of~h are uncorre-
lated and their variance depends on the training symbol
power, on the mobile speed and on the SINR, and is in-
dependent of positionk.

To refine the estimate of the overall channelĥ(n), we
propose to process it over slots with the optimal causal

Wiener filter. The refined estimate^̂h(n) is of the form

^̂
h(n) = H(q)ĥ(n) whereH(q) represents the optimal
Wiener filter (of unlimited order).

For every component of the channel estimate we can
then write

^̂
hk(n) = Hk(q)ĥk(n)

Hk(q) =
1

S+
ĥk ĥk

(q)

(
Shkhk (q)

S�
ĥk ĥk

(q)

)+ (2)

whereSxx(q) is the power spectral density (PSD) ofx,
f�g+ means “take the causal part of” andSxx(q) =
S+xx(q)S

�

xx(q) is the spectral factorisation ofSxx(q) in
its causal minimum-phase factor and in its anti-causal
maximum-phase counterpart. It turns out that, for an
AR(1) model for the channel amplitudes given in (1), the
PSD ofĥk(n) is

Sĥk ĥk(q) = Shkhk(q) + �2~hk

=

�
1� �2

�
�2hk

(1� �q�1) (1� �q)
+ �2~hk

= �2~hk

ak
�
1� bkq

�1
�
(1� bkq)

(1� �q�1) (1� �q)

where

bk =

�
�Jk �

q�
�Jk
�2 � 4�2

�
(2�)�1

ak =
�

bk
=

2�2

�Jk �
q�

�Jk
�2 � 4�2

�Jk = 1 + �2 +
�
1� �2

�
Jk

Jk =
�2hk
�2~hk

channel estimation SNR

(3)

Hence

S+
ĥk ĥk

(q) = �~hk
p
ak

1� bkq
�1

1� �q�1

S�
ĥk ĥk

(q) = �~hk
p
ak

1� bkq

1� �q(
Shkhk(q)

S�
ĥk ĥk

)+

=

�
kq

1� bkq
+

�k
1� �q�1

�+

=
�k

1� �q�1

(4)

where
�k =

�
1� �2

�
�2hk

�~hk
p
ak (1� bk�)

k = �kbk

Substituting (4) in (2), we have

Hk(q) =
�k

�~hk
p
ak (1� bkq�1)

) ^̂
hk;n = bk

^̂
hk;n�1 + �k ĥk;n

(5)

wherebk is given in (3) and

�k =
�k

�~hk
p
ak

=
�2hk
�2~hk

�
1� �2

�
� (1� bk�)

bk : (6)



When there is no time correlation (� = 0) over slots,

we havebk = 0 and�k =
�2
hk

�2
hk
+�2

vk

, that is the filter-

ing weights every component taking intoaccount a priori
variance information and channel estimation error.

3.1. Estimation of channel estimation error
variance

�2~h = �2~hk
= �2

ĥk
for impulse response samplesk at

which hk(n) � 0. Hence�2~h can be estimated from̂hk
at delaysk where we don’t expect the channel to contain
any energy. E.g. by overestimating the delay spread, we
can use the tail of the channel estimate to obtain an un-
biased estimate of�2~h (averaging across slots and across

delaysk for which ĥk � 0 can be performed.
Alternatively, in order not to increase the length of the

channel impulse response to be estimated, we can esti-
mate�2~h from the ĥk with smallest variance. Consider
the variance estimates�2

ĥk
(n) = ��2

ĥk
(n � 1) + (1 �

�)jĥk(n)j2. Note that�2~h is averaged over channel realza-
tions, and hence will only change with changes in chan-
nel fading statistics and user powers. Therefore, a long
time constant 1

1��
acn be used here, leading to accurate

estimates. Assume that the impulse responsehk contains
I samplesfhki ; i = 1; : : : ; Ig such that�2hki = 0 or is
sufficiently small (tails of the pulse shape). Letfkig rep-
resent a reordering of the variance estimates�2

ĥk
(n) such

that�2
ĥk1

� �2
ĥk2

� � � � � �2
ĥkMN

. Then we can esti-

mate�2~h(n) = 1
I

PI

i=1 �
2

ĥki
(n). This gives in principle

a slightly underestimated and hence a biased estimate of
�2~h. However, this bias will in practice tend to be offset
by an energy increase because of leakage from the pulse
shape tails.

4. ADAPTIVE WIENER FILTERING (via RLS) OF
CHANNEL ESTIMATES

Having in mind the optimal Wiener filtering of (5), we
would like to minimize the squared error between the
true overall channel delayhk(n) and its refined esti-

mate ^̂hk(n), by adapting the two coefficientsbk and�k
to adapt to the Doppler speed of the overall channel
taps. We can show that this minimization is equivalent to
the minimization of the mean square difference between

ĥk(n) and ^̂hk(n) (realizable practically) when corrected
with a factor dependent only on�k and�2~hk . Indeed

Ej^̂hk(n)� hk(n)j2
= Ejbk^̂hk(n� 1) + �kĥk(n) � hk(n)j2
= Ejbk^̂hk(n� 1) + (�k � 1)hk(n)j2 + �2k�

2
~hk

and

Ej^̂hk(n)� ĥk(n)j2
= Ejbk^̂hk(n� 1) + (�k � 1)ĥk(n)j2
= Ejbk^̂hk(n� 1) + (�k � 1)hk(n)j2 + (�k � 1)2�2~hk

Therefore Ej^̂hk(n) � ĥk(n)j2 + �k behaves like

Ej^̂hk(n)�hk(n)j2 (where�k = (�2k� (�k�1)2)�2~hk
=

(2�k � 1)�2~hk
).

Introducing temporal averaging over slots, with expo-
nential weighting, we formulate now the RLS adaptation
algorithm for the minimization problem stated above.
Derivatives with respect tobk and�k of (here slot tim-
ing is indicated by the second subscript)

nX
i=0

�n�i
����bk ^̂hk;n�i�1+ (�k�1)ĥk;n�i

���2+ (2�k�1)�2~hk
�

are forced to zero to give the recursive solution for each
componentk of the overall channel at each slotn8>>>>>>>><
>>>>>>>>:

Rn = �Rn�1+ Re

8<
:
"
^̂
hk;n�1
ĥk;n

#"
^̂
hk;n�1
ĥk;n

#H9=
;

P n = �P n�1 �
�

0
�2~hk

�

�n =

�
bk

�k � 1

�
= R�1

n Pn

(7)

whereRef�g means “take real part of”. Since the num-
ber of coupled parameters is only two, one may as well
invert the2�2 matrix rather than using true RLS. Initial-
isation of the algorithm requires onlyR0 to be different
from zero, so we can set it toR0 = 10�3I ; furthermore,
^̂
hk;0 = ĥk;1.

5. REL APPROACH
In [5] we proposed the Recursive Early-Late (REL) algo-
rithm. This technique was derived from the basic Early-
Late approach, and corresponds here to apply the Match-
ing Pursuit technique to the convolution of the refined

FIR estimate of the overall channel^̂hk(n) and the pulse-
shape matched filter (p�

�k = pk for the Root Raised Co-
sine). REL corresponds to maximum likelihood if the
noise is Gaussian and white and no other users are present
[6].

We assume training chips are sent in every user slot
during transmission. Let us defineB1(n) = B1(n)
IM
as the block Hankel matrix containing the training chip
sequence of user 1 (the user of interest here) in slot
n; andY is the received signal during the training se-
quence, vectorsg(n) = [g1(n) � � �gL(n)]T and � =
[�1 � � � �L] are the (complex) path amplitudes and delays
(�i 2 [�min; �max], the�i are integers here, denoting a
delay in units of sampling period). Due to the whiteness
of the training chips, the least-squares fitting problem for
the sparse channel parameters becomes

argmin
� ;g

kY �B1(n)Pg(n)k2

� argmin
� ;g

kĥ(n) �Pg(n)k2 (8)

whereĥ(n)=
�
BH
1 (n)B1(n)

�
�1

BH
1 (n)Y� ��1BH

1 (n)Y

is the slot-wise FIR channel estimate (used also in
[4]) and � represents the training chip sequence en-
ergy. To improve the path-wise channel estimate, we



replace the slotwise FIR channel estimateĥ(n) in (8)

by its filtered version^̂h(n) to obtain the fitting problem

argmin
� ;g

k^̂h(n) � Pg(n)k2. The sampling rate discrete-

time channel impulse response can be written ashk =PL

i=1 gipk��i . When reoptimization is done only for the
amplitude of the current iteration, we can formulate the

REL algorithm as following (definef0k = fk =
^̂
hk � p��k

andqk = pk � p��k):

for i = 1; � � � ; L or untill
jjfinjj2
jjfnjj2

< �

�i = argmax
k

jf i�1k j2
gi(n) = f�i=q0
f ik = fk �

Pi

l=1 gl(n) qk��l
( = f i�1k � gi(n) qk��i )

(9)

end

where, for example,� = 0:1.

6. SIMULATIONS

We showed in [7] that the SINR at RAKE output,�R, is

�R =
E
�
�21jf(n)h(n)j2

	
E
n
f(n)RYY f

H (n)� �2
tot

SF
jf(n)h(n)j2

o
wheref is the overall channel MF built with the esti-
mated channel from the REL approach (e.g. in the true
channel case, we havef = h

H (n)), �2k = E jak;nj2 (a
being the symbols sent by the BS),�2tot =

PK

k=1 �
2
k and

RYY = �2vI + �2
tot

SF
T (h(n))T H (h(n)) is the covari-

ance matrix of the received signal, whereT (h(n)) is
the (block) Toeplitz convolution matrix with the impulse
responseh(n) and RVV = �2vI is the noise model
(which can be extended to a banded block Toeplitz matrix
model).

All the active users are considered synchronous and
use the same spreading factorSF . The UMTS chip rate
is assumed (3.84 Mchips/sec) and an oversampling fac-
tor of M = 2 is used in the simulations, which show
the NMSE (Normalized channel estimation MSE) and the
SINR versus the input SNR.

In the figures below, “true ch” refers to a RAKE re-
ceiver that has complete knowledge of the channel, “REL
FIR” refers to a RAKE that estimates the overall channel
via REL on the FIR brute estimatêh(n), “REL OPT”

refers to a RAKE with REL on^̂hn;k of (5) that uses the
optimal bk of (3) and�k of (6), “REL EST” refers to a

RAKE with REL on^̂hn;k with filtering parametersbk and
�k determined by adaptive filtering (7),“REL FIX” refers

to a RAKE with REL on the estimate^̂hn;k where the two
coefficientsbk and�k are fixed (for every component of
the overall channel) to� and(1 � �) respectively (the�
of the AR(1) channel model).

In Fig. 1 to Fig. 4, the environment is UMTS Pedes-
trian (Ped: 3 km/h, 2 paths, delay spread of about 1�s,
equal average power of the two paths); in Fig. 5 to Fig. 7,
the environment is UMTS Vehicular (Veh: 120 km/h, 4
paths, delay spread of 4 chip periods, exponentially de-
caying average power of the paths); spreading factor is

alwaysSF = 64 with 5 or 32 users transmitting with
equal power and 20% of the slot symbols are considered
training symbols; the forgetting factor� of the RLS algo-
rithm is always0:99.

We can notice how the SINRs of the various REL im-
plementations are very close to each other, in the SNR
range of interest, when few users are active in the sys-
tem. On the other hand, multi user interference (MUI)
degrades channel estimation and hence further degrades
SINR, more for non optimal refining as “REL FIR”
or “REL FIX”. We can also notice how the NMSE of
the “REL EST” channel estimate is always close to the
NMSE of the optimal “REL OPT” channel estimate, even
in high MUI situation.

7. CONCLUSIONS

We introduced optimal causal Wiener filtering, adapted to
the Doppler spread of the channel, to greatly improve the
brute FIR pilot-based channel estimation accuracy. The
adaptive version of this filtering, via RLS, has a slot as
time unit, so its complexity is affordable. Optimal causal
Wiener filtering allows optimal compromising between
temporal decorrelation and slot-wise estimation error and
not only temporal decorrelation like filtering on the ba-
sis of a Karhunen-Lo´eve decomposition of the channel
tap autocorrelation function. We proposed the use of
the Recursive Early-Late algorithm for approximation of
the sparse propagation channel, which exploits the white-
ness of the training chips and the pulse-shape filter and
exibits smaller complexity with respect to Least-Square
techniques that use the all received training chips.
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Figure 3: Ped, 3 Km/h,�0:99, 32 users: SINR
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Figure 4: Ped, 3 Km/h,�0:99, 32 users: NMSE
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Figure 5: Veh, 120 Km/h,�0:99, 5 users: SINR
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Figure 6: Veh, 120 Km/h,�0:99, 5 users: NMSE
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Figure 7: Veh, 120 Km/h,�0:99, 32 users: SINR
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Figure 8: Veh, 120 Km/h,�0:99, 32 users: NMSE


